Rumus Kubus - Volume : Sisi pertama dikali sisi kedua dikali sisi ketiga (S pangkat 3)
Rumus Balok - Volume : Panjang dikali lebar dikali tinggi (p x l x t)
Rumus Bola - Volume : phi dikali jari-jari dikali tinggi pangkat tiga kali 4/3 (4/3 x phi x r x t x t x t) - Luas : phi dikali jari-jari kuadrat dikali empat (4 x phi x r x r)
Rumus Limas Segi Empat - Volume : Panjang dikali lebar dikali tinggi dibagi tiga (p x l x t x 1/3) - Luas : ((p + l) t) + (p x l)
Rumus Tabung - Volume : phi dikali jari-jari dikali jari-jari dikali tinggi (phi x r2 x t) - Luas : (phi x r x 2) x (t x r)
Rumus Kerucut - Volume : phi dikali jari-jari dikali jari-jari dikali tinggi dibagi tiga (phi x r2 x t x 1/3) - Luas : (phi x r) x (S x r) - S : Sisi miring kerucut dari alas ke puncak (bukan tingi)
Rumus Prisma Segitiga Siku-siku - Volume : alas segitiga kali tinggi segitiga kali tinggi prisma bagi dua (as x ts x tp x
Kuasai Perbedaan Penelitian Skripsi Kualitatif dan Kuantitatif– Jika sebelumnya sudah mengulas tentang manfaat dan metode penelitian skripsi. Maka pada kesempatan kali ini akan mengulas tentang jenis penelitian skripsi. Ada yang belum tahu jenis penelitian skripsi itu aada apa saja sih? tenang, kita akan simak satu persatu di bawah ini
Jenis Penelitian Skripsi Kualitatif dan Perbedaannya Dengan Kuantitatif
Sedangkan yang disebut dengan jenis penelitian skripsi kualitatif adalah metode penelitian melakukan penelitian secara eksploratif. Sifat penelitiannya deskriptif atau menjelaskan, tentu saja menjelaskan menggunakana nalisis. Karena sifatnya penelitian ini adalah riset deskriptif, maka bersifat subjektif, dengan tetap mengunakan teori-teori.
Dikatakan penelitian deskriptif karena dari cara penyampaian peneliti mengambarkan penemuan data yang ditemui di lapangan. Dimana pelaporan ini berdasarkan penilaian subjektivitas dari si peneliti. Meskipun subjektif, tetap dari ulasan atau analisis tetap dikomparasikan dengan teori yang ada.
Jika terjadi perbedaan antara realitas dan teori, maka penulis dituntut untuk menemukan solusi atas masalah yang terjadi. Umumnya metode kualitatif lebih cocok digunakan untuk jenis penelitian yang sifatnya sosial. Misalnya meneliti perilaku, sikap di suatu masyarakat atau kelompok tertentu. atau meneliti tentang pola-pola nilai adat disuatu daerah tertentu.
Karena jika dipaksanakan menggunakan metode kuantitatif dalam penelitian sosial, misal mempelajari hukum adat, akan sulit. Cocok dan pas-nya ya memang menggunakan jenis kualitatif. Karena dapat diteliti lebih menyeluruh dan lebih dalam. Dari segi hasil sekalipun, jenis penelitian skripsi kualitatif bisa mempelajari hubungan dan nilai yang berlaku di suatu kelompok atau daerah itu sendiri.
1. Karakteristik jenis penelitian skripsi kualitatif
Penelitian kualitatif disebut dengan metode fenomenologis atau metode post positivistic atau metode impresionistik. Adapun karakteristik dari penelitian kualitatif. Diantarannya menggunakan pola pikir induktif atau menggunakan pole pikir empiris dan rasioonal (bottom-up).
Karakteristik penelitian ini didasari pada peroleh data, bukan berdasarkan hipotesis. Itu sebabnya penelitian kualitatif bersifat subjektif. Penelitian yang menggunakan hipotesis adalah penelitian kuantitatif.
2. Prosedur Penelitian Skripsi
Salah satu prosedur yang dilakukan lebih bersifat fleksibel. Secara garis besar wajib membuat rumusan masalah sebagai fokus penelitian, mengumpulkan data , menganalisis data, membuat rumusan hasil studi, dan menyusun kesimpulan.
3. Jenis penelitian skripsi kualitatif
Pada dasarnya ada banyak sekali jenis penelitian skripsi kualitatif. Diantarannya ada feonomenologi, etnografi, studi kasus, metode teori dasar, dan metode historis. Dimana dari masing-masing jenis tersebut memiliki kelebihan dan kelemahannya.
4. Tahap Penelitian Skripsi Kualitatif
Karena jenis ini berbeda dengan penelitian kuantitatif, maka terdapat pula tahapan dalam penelitian kualitatif. Diantarannya wajib untuk mengangkat permasalahan, memunculkan pertanyaan penelitian, mengumpulkan data yang relevan dan melakukan analisis data. Termasuk pula melakukan menjawa pertanyaan peneliti.
Jenis Penelitian Skripsi Kuantitatif dan Perbedaan dengan Kualitatif
Jenis penelitian skripsi kualitatif adalah metode penelitian yang dilakukan secara terstruktur dan terperinci. Karena data atau penelitian sifatnya harus bisa di ukur, maka identic dengan penggunaan angka, tabel, diagram ataupun grafik.
Penelitian Kuantitatif adalah penelitian yang cocok digunakan untuk sasaran penelitian yang memiliki fragmental, memiliki kecenderungan tetap dan bermensi tunggal. Maka jenis penelitian kuantitatif ini adalah solusinya. Cocok pula digunakan untuk penelitian yang variabelnya dapat diidentifikasi sekaligus dapat diukur.
Penelitian kuantitatif adalah penelitian yang menggunakan rasional – empiris (top-down) atau yang menggunakan pola berfikir deduktif, jadi kebalikan dari penelitian kualitatif. Nah, buat kamu yang masih juga binggung, penelitian kuantitatif ini cocok untuk model penelitian yang menjelaskan fenomena bersifat umum menjadi lebih khusus.
Sedangkan logika yang digunakan dalam penelitian ini menggunakan logika positivistik atau objektif. Dari segi penelitian pun dilakukan mengikuti prosedur yang sudah dirancang. Oh iya, penelitian kuantitatif memposisikan peneliti terpisah dari objek penelitian, tujuannya agar tidak melahirkan subjektifitas dari dalam si peneliti.
1. Prosedur Penelitian Kuantitatif
Karena metode ini berbeda dari metode penelitian kualitatif. Maka penelitian Kuantitatif pun juga memiliki prosedur tersendiri. Lantas prosedur apa saja yang harus dipersiapkan sebelumnya?
Pertama perlu dibuat identifikasi permasalahan, kedua perlu studi literatur terlebih dahulu, ketiga baru mengembangkan kerangka kosep dan keempat dilanjutkan dengan proses identifikasi dan definisi variabel, membuat atau menjawab pertanyaan dan membuat hipotesis. Kelima, lakukan pengembangan desain penelitian dan lakukan teknik sampling.
Barulah masuk poin ketujuh adalah proses pengumpulan dan kuantifikasi data. Disertai dengan analisis data dan interpretasi dan komunikasi hasil penelitian. Setidaknya cara pada penelitian kuantitatif lebih terukur.
2. Tipe Penelitian skripsi Kuantitatif
Seperti halnya penelitian kualitatif yang memiliki beberapa tipe penelitian. Pada penelitian Kuantitatif juga memiliki rancangan atau design dalam melakukan penelitian. Ada penelitian deskriptif, penelitian korelational, penelitian kausal komparatif, penelitian tindakan, penelitian perkembangan dan penelitian eksperimen. dimana dari masing-masing tipe tersebut kamu bisa memilihnya.
3. Metode Penelitian Skripsi Kuantitatif
Metode penelitian kuantitatif ada istilah yang disebut proses logico-hypothetico-verifikatif yang harus mengikuti beberapa langkah seperti wajib terdapat perumusan masalah dan penyusunan kerangka berfikir. Kerangka berfikir inilah yang dapat digunakan sebagai penyusunan hipotesis dari argumentasi yang nantinya akan menjelaskan hubungan yang akan diteliti.
tidak hanya itu, diperlukan pula perumuhan hipotesis dan pengujian hipotesis. Sebelum akhirnya masuk pada penarikan kesimpulan yang akan mengarahkan pada hasil hipotesis tersebut akan diterima atau ditolak.
Itulah dua jenis penelitian skripsi yang bisa kamu dalami untuk mematangkan metoe apa yang akan kamu ambil. Terkait dengan metode yang digunakan, sekali lagi perhatikan objek penelitian yang akan kamu ambil. Apakah akan fokus pada tema yang sifatnya sudah bisa di ukur? Atau ingin meneliti pada objek yang sifatnya tidak bisa diukur.
Kelebihan dari masing-masing jenis penelitian skripsi di atas hanya perkara waktu dan proses pengambilan data di lapangan. Dari segi waktu, penelitian kuantitatif waktu bisa didesain berapa lama dan kapan penelitian akan berakhir. Semakin cepat pengambilan data, maka semakin cepat hasilnya.
Sedangkan jika kamu mengambil penelitian kualitatatif relative memakan waktu lebih lama. karena di faktor proses observasi yang tidak hanya memakan waktu seminggu atau sebulan. Belum lagi jika nanti ada koreksi dan diperlukan pengambilan data observasi ulang. Maka waktu yang akan diperoleh pun juga akan lebih lama daripada normalnya.
Nah, dari dua jenis penelitian skripsi di atas, jenis manakah yang paling cocok dengan keinginan dan target kamu menyelesaikan skripsi? Tentu saja jawabannya pun bervariasi. Karena setiap peneliti memiliki kemampuan dan kelebihannya sendiri-sendiri. Minimal kamu sekarang sudah mengetahui perbedaan penelitian kualitatif dan kuantitatif bukan?
Nah, buat peneliti yang mual dengan pengolahan angka dan statistic secara berlebihan, bisa mengambil kualitatif. Sebaliknya, bagi peneliti yang suka dunia per-angka-an dan lebih senang efektivitas waktu, akkan memiliki jenis penelitian skripsi kuantitatif.
Nah, semoga ulasan di atas memberikan banyak gambaran jenis penelitian skripsi yang pas dan sesuai dengan kamu. Selamat menyelesaikan skripsi, semoga selesai tepat waktu.
Sudah menjadi kemampuan natural manusia dalam memahami apa yang kita lihat, contohnya, saat kita melihat gambar di bawah ini, kita dapat dengan mudah mengidentifikasi objek-objek yang ada dalam gambar di bawah ini, beserta dengan hierarki nya.
Convolutional Neural Network (CNN) adalah salah satu jenis neural network yang biasa digunakan pada data image. CNN bisa digunakan untuk mendeteksi dan mengenali object pada sebuah image. CNN adalah sebuah teknik yang terinspirasi dari cara mamalia — manusia, menghasilkan persepsi visual seperti contoh diatas.
Secara garis besar Convolutional Neural Network (CNN) tidak jauh beda dengan neural network biasanya. CNN terdiri dari neuron yang memiliki weight, bias dan activation function. Convolutional layer juga terdiri dari neuron yang tersusun sedemikian rupa sehingga membentuk sebuah filter dengan panjang dan tinggi (pixels).
Bagaimana CNN bekerja?
Secara garis besarnya, CNN memanfaatkan proses konvolusi dengan menggerakan sebuah kernel konvolusi (filter) berukuran tertentu ke sebuah gambar, komputer mendapatkan informasi representatif baru dari hasil perkalian bagian gambar tersebut dengan filter yang digunakan.
L
angkah 1 : Memecah gambar menjadi gambar yang lebih kecil yang tumpang tindih
Dari gambar seorang anak kecil yang menaiki kuda mainan diatas, hasil dari proses konvolusi dapat diilustrasikan sebagai berikut ini:
Dengan ini, gambar asli dari seorang anak kecil diatas menjadi 77 gambar yang lebih kecil dengan konvolusi yang sama.
L
angah 2 : Memasukkan setiap gambar yang lebih kecil ke small neural network
Setiap gambar kecil dari hasil konvolusi tersebut kemudian dijadikan input untuk menghasilkan sebuah representasi fitur. Hal ini memberikan CNN kemampuan mengenali sebuah objek, dimanapun posisi objek tersebut muncul pada sebuah gambar.
Proses ini dilakukan untuk semua bagian dari masing-masing gambar kecilnya, dengan menggunakan filter yang sama. Dengan kata lain, setiap bagian gambar akan memiliki faktor pengali yang sama, atau dalam konteks neural network disebut sebagai weights sharing. Jika ada sesuatu yang tampak menarik di setiap gambarnya, maka akan ditandai bagian itu sebagai object of interest.
L
angkah 3 : Menyimpan hasil dari masing-masing gambar kecil ke dalam array baru
Maka akan terlihat seperti ini:
L
angkah 4 : Downsampling
Pada langkah 3, array masih terlalu besar, maka untuk mengecilkan ukuran array nya digunakan downsampling yang penggunaannya dinamakan max pooling atau mengambil nilai pixel terbesar di setiap pooling kernel. Dengan begitu, sekalipun mengurangi jumlah parameter, informasi terpenting dari bagian tersebut tetap diambil.
L
angkah 5 : Membuat prediksi
Sejauh ini, kita telah merubah dari gambar yang berukuran besar menjadi array yang cukup kecil. Nah, array merupakan sekelompok angka, jadi dengan menggunakan array kecil itu kita bisa inputkan ke dalam jaringan saraf lain. Jaringan saraf yang paling terakhir akan memutuskan apakah gambarnya cocok atau tidak. Untuk memberikan perbedaan dari langkah konvolusi, maka bisa kita sebut dengan “fully connected” network.
Secara garis besarnya, langkah-langkah diatas tampak seperti gambar berikut ini :
Arsitektur dari CNN dibagi menjadi 2 bagian besar, Feature Extraction Layer dan Fully-Connected Layer (MLP).
Feature Extraction Layer
Proses yang terjadi pada bagian ini adalah melakukan “encoding” dari sebuah image menjadi features yang berupa angka-angka yang merepresentasikan image tersebut (Feature Extraction). Feature extraction layer terdiri dari dua bagian yaitu Convolutional Layer dan Pooling Layer. Namun kadang ada beberapa riset/paper yang tidak menggunakan pooling.
Convolutional Layer (Conv. Layer)
Gambar tersebut menunjukkan RGB (Red, Green, Blue) gambar berukuran 32x32 pixel yang sebenarnya adalah multidimensional array dengan ukuran 32x32 pixel (3 adalah jumlah channel). Convolutional layer terdiri dari neuron yang tersusun sedemikian rupa sehingga membentuk sebuah filter dengan panjang dan tinggi (pixel). Sebagai contoh , layer pertama pada feature extraction layer adalah conv. layer dengan ukuran 5x5x3. Panjang 5 pixel, tinggi 5 pixel, dan tebal/jumlah 3 buah sesuai dengan channel dari gambar tersebut.
Ketiga filter ini akan digeser keseluruhan bagian dari gambar. Setiap pergeseran akan dilakukan operasi “dot” antara input dan nilai dari filter tersebut sehinga menghasilkan sebuah output atau biasa disebut sebagai actvation map atau feature map. Proses dari feature map seperti pada gambar berikut.
Stride
Stride adalah parameter yang menentukan berapa jumlah pergeseran filter. Jika nilai stride adalah 1, maka conv. filter akan bergeser sebanyak 1 pixel secara horizontal lalu vertical. Pada ilustrasi diatas, stride yang digunakan adalah 2. Semakin kecil stride maka akan semakin detail informasi yang kita dapatkan dari sebuah input, namun membutuhkan komputasi yang lebih jika dibandingkan dengan stride yang besar. Namun perlu diperhatikan bahwa dengan menggunakan stride yang kecil kita tidak selalu akan mendapatkan performa yang bagus.
Padding
Padding atau zero padding adalah parameter menentukan jumlah pixel (berisi nilai 0) yang akan ditambhakan di setiap sisi dari input. Hal ini digunakan dengan tujuan untuk memanipulasi dimensi output dari conv. layer (feature map).
Dengan menggunakan padding, kita akan dapat mengukur dimensi output agar tetap sama seperti dimensi input atau setidaknya tidak berkurang secara drastis. Sehingga kita bisa menggunakan conv. layer yang lebih dalam sehingga lebih banyak feature yang berhasil di-extract. Meningkatkan performa model karena conv. layer akan fokus pada informasi yang sebenarnya yaitu yang berada diantara zero padding tersebut. Pada ilustrasi diatas, dimensi dari input sebenarnya adalah 5x5, jika dilakukan convolution dengan filter 3x3 dan stride sebesar 2, maka akan didaptkan feature map dengan ukuran 2x2. Namun jika ditambahkan zero padding sebanyak 1, maka feature map yang dihasilkan berukuran 3x3 (lebih banyak informasi yang dihasilkan). Untuk menghitung dimensi dari feature map kita bisa gunakan rumus sebagai berikut.
Keterangan :
W = Panjang/Tinggi Input
N = Panjang/Tinggi Filter
P = Zero Padding
S = Stride
Fungsi Aktivasi
Fungsi aktivasi berada pada tahap sebelum melakukan pooling layer dan setelah melakukan proses konvolusi. Pada tahap ini, nilai hasil konvolusi dikenakan fungsi aktivasi atau activation function. Terdapat beberapa fungsi aktivasi yang sering digunakan pada convolutional network, di antaranya tanh() atau reLU. Aktivasi reLU menjadi pilihan bagi beberapa peneliti karena sifatnya yang lebih berfungsi dengan baik.
Fungsi yang digunakan untuk aktivasi pada reLU, fungsi reLU adalah nilai output dari neuron bisa dinyatakan sebagai 0 jika inputnya adalah negatif. Jika nilai input dari fungsi aktivasi adalah positif, maka output dari neuron adalah nilai input aktivasi itu sendiri.
Pooling Layer
Polling layer biasanya berada setelah conv. layer. Pada prinsipnya pooling layer terdiri dari sebuah filter dengan ukuran dan stride tertentu yang bergeser pada seluruh area feature map. Pooling yang biasa digunakan adalah Max Pooling dan Average Pooling. Tujuan dari penggunaan pooling layer adalah mengurangi dimensi dari feature map (downsampling), sehingga mempercepat komputasi karena parameter yang harus di update semakin sedikit dan mengatasi overfitting.
Hal terpenting dalam pembuatan model CNN adalah dengan memilih banyak jenis lapisan pooling. Hal ini dapat menguntungkan kinerja model (Lee, Gallagher, & Tu, 2015). Lapisan pooling bekerja di setiap tumpukan feature map dan mengurangi ukurannya. Bentuk lapisan pooling yang paling umum adalah dengan menggunakan filter berukuran 2x2 yang diaplikasikan dengan langkah sebanyak 2 dan kemudian beroperasi pada setiap irisan dari input. Bentuk seperti ini akan mengurangi feature map hingga 75% dari ukuran aslinya. Berikut gambar contoh operasi Max Pooling.
Lapisan pooling akan beroperasi pada setiap irisan kedalaman volume input secara bergantian. Pada gambar di atas, lapisan pooling menggunakan salah satu operasi maksimal yang merupakan operasi yang paling umum. Gambar 3.4. menunjukkan operasi dengan langkah 2 dan ukuran filter 2x2. Dari ukuran input 4x4, pada masing-masing 4 angka pada input operasi mengambil nilai maksimalnya dan membuat ukuran output baru menjadi 2x2.
Ilustrasi Proses pada Lapisan Konvolusi
Lapisan konvolusi yang diaplikasikan untuk mendapatkan feature map. Contoh proses konvolusi dengan input berupa citra satu channel digambarkan seperti pada gambar berikut. Pada gambar tersebut, sebuah citra berukuran 10x10 piksel direpresentasikan sebagai matriks. Matriks awal diproses dengan dua layer konvolusi untuk mendapatkan feature map. Pada layer konvolusi pertama, filter yang digunakan berukuran 3x3 dengan bobot yang telah ditentukan. Hasil dari konvolusi pertama berupa matriks dengan ukuran 9x9.
Setelah melalui proses konvolusi, fungsi aktivasi dikenakan pada hasil konvolusi. Fungsi aktivasi yang digunakan adalah reLu. Output dari fungsi reLu kemudian dikenakan pooling dengan filter berukuran 2x2 dan stride sebesar dua. Sebelum melakukan pooling, dapat digunakan zero padding sehingga matriks hasil pooling berukuran 5x5. Matriks ini kemudian melalui tahap konvolusi kedua dengan ukuran filter sama seperti sebelumnya, tetapi dengan bobot yang berbeda. Dalam hal ini, ukuran tidak harus sama dengan konvolusi tahap pertama dan merupakan parameter yang bisa dioptimalkan. Sementara bobot matriks merupakan nilai yang dicari melalui proses pembejalaran.
Output dari proses konvolusi tahap kedua dikenakan dengan fungsi aktivasi yang sama, yaitu reLu. Pooling yang dikenakan berukuran 2x2 dengan stride satu, sehingga menghasilkan matriks dengan ukuran 4x4. Proses konvolusi bisa dilanjutkan sesuai dengan matriks akhir yang diinginkan. Dalam hal ini, jika konvolusi dihentikan sampai tahap kedua, maka matriks berukuran 4x4 tersebut menjadi input bagi neural network. Jika filter yang digunakan sejumlah n, maka input bagi neural network adalah nx4x4 nodes. Pada praktiknya, penggunaan fungsi aktivasi dan pooling bisa dibalik urutannya tanpa mengubah hasil dari konvolusi. Pembalikan ukuran ini bertujuan untuk mengurangi proses yang digunakan sehingga menjadi lebih cepat.
Fully-Connected Layer (MLP)
Feature map yang dihasilkan dari feature extraction masih berbentuk multidimensional array, sehingga harus melakukan “flatten” atau reshape feature map mejadi sebuah vector agar bisa digunakan sebagai input dari fully-connected layer.
Lapisan Fully-connected adalah lapisan dimana semua neuron aktivitas dari lapisan sebelumnya terhubung semua dengan neuron di lapisan selanjutnya seperti hal nya jaringan syaraf tiruan bisa. Setiap aktivitas dari lapisan sebelumnya perlu diubah menjadi data satu dimensi sebelum dapat dihubungkan ke semua neuron di lapisan Fully-Connected.
Lapisan Fully-Connected biasanya digunakan pada metode Multi lapisan Perceptron dan bertujuan untuk mengolah data sehingga bisa diklasifikasikan. Perbedaan anatar lapisan Fully-Connected dan lapisan konvolusi biasa dalah neuron di lapisan konvolusi terhubung hanya ke daerah tertentu pada input. Sementara lapisan Fully-Connected memiliki neuron yang secara keseluruhan terhubung. Namun, kedua lapisan tersebut masih mengoprasikan produk dot, sehinga fungsinya tidak begitu berbeda.
Dropout Regularization
Dropout adalah teknik regularisasi jaringan syaraf dimana beberapa neuron akan dipilih secara acak dan tidak dipakai selama pelatihan. Neuron-neuron ini dapat dibilang dibuang secara acak. Hal ini berarti bahwa kontribusi neuron yang dibuang akan diberhentikan sementara jaringan dan bobot baru juga tidak diterapkan pada neuron pada saat melakukan backpropagation.
Dropout merupakan proses mencegah terjadinya overfitting dan juga mempercepat proses learning. Dropout mengacu kepada menghilangkan neuron yang berupa hidden mapun layer yang visible di dalam jaringan. Dengan menghilangkan suatu neuron, berarti menghilangkannya sementara dari jaringan yang ada. Neuron yang akan dihilangkan akan dipilih secara acak. Setiap neuron akan diberikan probabilitas yang bernilai antara 0 dan 1.
Pada gambar diatas jaringan syaraf (a) merupakan jaringan syaraf biasa dengan 2 lapisan tersembunyi. Sedangkan pada bagian (b) jaringan syaraf sudah diaplikasikan teknik regularisasi dropout dimana ada beberapa neuron aktivasi yang tidak dipakai lagi. Teknik ini sangat mudah diimplementasikan pada model CNN dan akan berdampak pada performa model dalam melatih serta mengurangi overfitting.
Pembelajaran Backpropagation
Salah satu sifat neural network yang menyerupai dengan otak manusia adalah bahwa neural network membutuhkan proses pembelajaran. Pembelajaran dilakukan untuk menentukan nilai bobot yang tepat untuk masing-masing input. Bobot bertambah jika informasi yang diberikan oleh neuron yang bersangkutan tersampaikan. Sebaliknya jika informasi tidak disampaikan maka nilai bobot berubah secara dinamis sehingga dicapai suatu nilai yang seimbang. Apabila nilai ini telah mampu mengindikasikan hubungan yang diharapkan antara input dan output, proses pembelajaran bisa dihentikan.
Backpropagation merupakan algoritma pembelajaran yang terawasi dan biasanya digunakan oleh perceptron dengan banyak lapisan untuk mengubah bobotbobot yang terhubung dengan neuron-neuron yang ada pada lapisan tersembunyi. Algoritma ini menggunakan error output untuk mengubah nilai bobot-bobotnya dalam arah mundur (backward). Untuk mendapatkan error ini, tahap perambatan maju (forward propagation) harus dikerjakan terlebih dahulu. Pada saat perambatan maju, neuron-neuron diaktifkan dengan menggunakan fungsi aktivasi yang dapat diturunkan, seperti fungsi sigmoid.
Arsitektur jaringan backpropagation seperti ditunjukkan pada dibawah ini. Gambar tersebut menunjukkan neural network yang terdiri dari tiga unit neuron pada lapisan input(x1, x2, dan x3), dua neuron pada lapisan tersembunyi(Z1 dan Z2), dan 1 unit neuron pada lapisan output (Y). Bobot yang menghubungkan x1, x2, dan x3 dengan neuron pertama pada lapisan tersembunyi adalah V11, V21, dan V31 . b11 dan b12 adalah bobot bias yang menuju neuron pertama dan kedua pada lapisan tersembunyi. Bobot yang mengubungkan Z1 dan Z2 dengan neuron pada lapisan output adalah w1 dan w2. Bobot bias b2 menghubungkan lapisan tersembunyi dengan lapisan output.
Confusion Matrix
Salah satu metode untuk mengukur performa dari suatu model klasifikasi adalah dengan mencari nilai precision, recall, serta nilai akurasi dari suatu model. Beberapa istilah yang umum dipakai dalam pengukuran kinerja model klasifikasi adalah positive tupple dan negative tupple. Positive tupple adalah tupple yang menjadi fokus pembahasan. Sedangkan negative tupple adalah tupple selain yang sedang menjadi fokus pembahasan.
Beberapa istilah lain yang merupakan dasar dalam pencarian nilai precision, recall, dan akurasi nilai true positive (TP), true-negative (TN), false positive (FP), dan false negative (FN). Istilah-istilah tersebut biasa dirangkum sebagai suatu matriks yang disebut confusion matrix sebagaimana ditunjukkan pada berikut.
Pada gambar tersebut ditunjukkan, nilai true positive didefinisikan sebagai positive tupple yang diklasifikasikan dengan benar oleh model. True negative adalah negative tupple yang diklasifikasikan dengan benar oleh model. Sementara itu, false positive adalah negative tupple yang diklasifikasikan sebagai kelas positif oleh model. False negative adalah positive tupple yang diklasifikasikan sebagai kelas negatif oleh model klasifikasi. Berdasar confusion matrix pada gambar tersebut, kinerja model klasifikasi dapat dihitung.
Akurasi
Akurasi didefinisikan sebagai persentase dari data uji yang diklasifikasikan ke kelas yang benar. Akurasi dapat dinyatakan dalam persamaan berikut.